make · explore · discover

REVOLON

free, fast, flexible - TEM Scan Controller with open access and Python sample code

New standard in STEM control

The REVOLON TEM Scan Controller defines new benchmarks with open access, high-performance functions, free scan patterns and compatibility with all major TEM models.

free microscopy

Unrestricted beam access with Python code

fast scanning

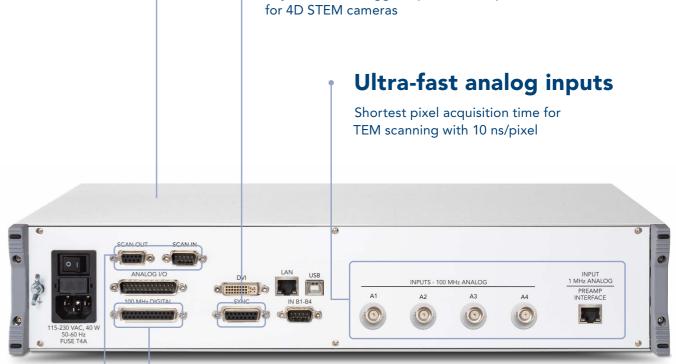
Highest speed for in-situ STEM

flexible control Best 4D STEM

synchronization

Simultaneous acquisition of up to 16 signals with a maximum speed of 200 ns/pixel

Advanced image scans


Built-in scan generator and image acquisition modes

Gapless frames

Time lapse acquisition of multiple frames without any gap, for in-situ microscopy

Camera synchronization

Adjustable TTL trigger inputs and outputs for 4D STEM cameras

Broad TEM compatibility

Connection via TEM's external scan interface, automatic scan switch included

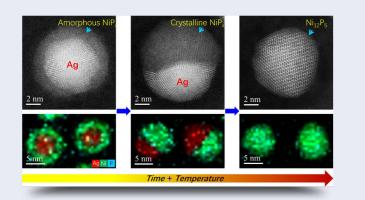
Digital pulse signals

Inputs for pulse processors with single electron counting

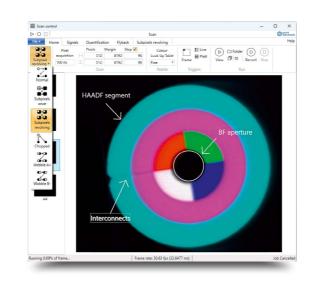
To the cutting edge

Use point electronic Scan Control Software or develop own application

Create pixel map scan job	
C++	
DC_API REVORetCode t DC_CALLCONV Crea REVOChannelInfo_t* channelConfig, uin	<pre>tePixelMapScanJob(uint32_t channelCount, const t16_ts ScanId);</pre>
Parameters	
Parameters	Description
uint32_t channelCount	Count of channels in channelConfig array
const REVOChannelInfo_t* channelConfig	Channel configuration array
uint16_t& ScanId	Generated scan job ID
Return code (see REVOLibCommon.h)	
Return code (see REVOLIbCommon.h) Description This function creates a pixel map scan job with defa Remarks See Channelinfo structure in REVO.h for definition Particle Tables	
Description This function creates a pixel map scan job with defa Remarks See Channelinfo structure in REVO.h for definition Related Topics	
Description This function creates a pixel map scan job with defi Remarks See Channelinfo structure in REVO.h for definition Related Topics CreateImageScan.Job (* see page 7)	
Description This function creates a pixel map scan job with defa Remarks See Channelinfo structure in REVO.h for definition Related Topics	


4D STEM synchronization

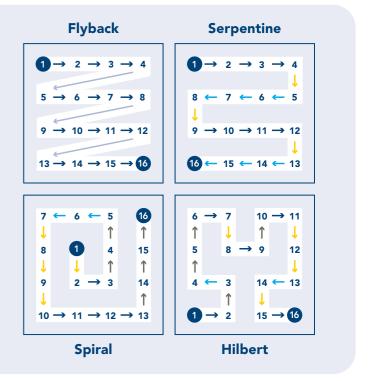
- Gain direct and unrestricted access to beam timing
- Freely configure frame/line/pixel scan triggers for camera synchronization
- Combine with advanced subpixel, chopped or wobble scan modes


Advanced pixel maps

- Prepare a list of coordinates
- Upload to the scan controller
- Run and download digitized values
- Make an image, display and repeat

Highest speed for in-situ STEM

- Speed up in-situ experiments with gapless frames
- Improve temporal resolution with fastest analog and digital inputs
- Optimize frame rate with full access to flyback parameters



- Ac sh - Bu ru - Ac 11 - O

X Huang et al, ACS Nano, DOI:10.1021/acsnano.8b03106

SDK for open device control

- Software Development toolKit (SDK) for
- complete configuration
- DLL control library for Windows and Linux
- Python sample code for independent coding

Function highlights

- Additional digital 16-bit magnification, 10-bit scan shift and 360° scan rotation
- Built-in 1...50,000 kHz clock generator, with free running or synchronized scans
- Advanced 20-bit digital lock-in amplification on the 1 MHz analog input
- Optional GHz digital inputs with adjustable
- thresholds for ultrafast electron counting

REVOLON TEM Scan Controller

Control & data	LAN or USB2
Signal inputs	4× 12-bit 100 MHz analog (A1A4)
	$4 \times$ 12-bit 100 MHz analog (B1B4) (B is not simultaneous with A)
	4×, 8x or 16x 12-bit 5 MHz MICS amplified analog (M1M16)
	12× 16-bit or 6x 32-bit TTL 100 MHz digital (D1D12)
	1× 20-bit 1 MHz analog (L1, see Preamp interface)
Scan outputs	$\pm 2.2V\pm 7.5 \text{ or } \pm 0.65\pm 2.2V$ balanced X, Y scan signals (SCAN OUT)
	±3.5±12 V X, Y scan signals (ANALOG I/O)
	Gnd., 5V or 15 V external bank/scan (ANALOG I/O)
	Automatic scan switch for daisy-chain (SCAN IN and ANALOG I/O)
Synchronization	3× TTL scan Frame, Line and Pixel inputs
	1× TTL scan Pause/Resume input
	3× TTL scan Frame, Line and Pixel outputs
	1× TTL Device Clock output
	1× TTL Beam Blanker output
Scan generator	10 ns 10 s pixel acquisition time (10 ns steps)
	10 ns 10 s pixel set and hold times (enumerated list)
	165,635 pixels width and height
	0360° digital scan rotation
	0256× frame average
	050× line average
	0255 frame count
	Mains frequency synchronization
Image scan modes	Normal (sawtooth, flyback)
	Sub-pixel (one or revolving)
	Chopped
	Wobble (A+, B-)
Pixel maps	16 MPixel pixel list size (4k x 4k image scan equivalent)
	Individual set and hold times per pixel
	Individual Pixel, Line and Frame triggers per pixel
Adjustments & amplification	-1.251.25 V 16-bit signal offset (A1A4 or B1B4)
	-2226 dB signal gain (A1A4 or B1B4)
	-11 V 16-bit MICS signal input offset (M1M16)
	11,800× MICS signal gain (M1M16)
	-11 V 16-bit MICS signal output offset (M1M16)
	3.4 MHz34 Hz MICS low-pass filter (M1M16)
	-22 V 10-bit scan offset (SCAN OUT and ANALOG I/O)
	3.512× scan gain (SCAN OUT and ANALOG I/O)
	-22 V 16-bit scan shift (ANALOG I/O)
	065,635× scan shift and magnification (ANALOG I/O)

Preamp interface	14,095
	150,00
	Free, Piz
Ultrahigh speed electron counting	2× 16-b
(optional) [–]	2× three
Touch display	Scan sta
	Installed
	Scan de
	LAN co
Housing	19-inch

Parts and cables	
REVOLON Scan Controller unit	Standard 1×
TEM scan cables	Standard 2× SCAN OUT (for TFS and JEOL external scan interfaces)
	Standard 2× SCAN IN (for TFS and JEOL external scan interfaces)
Signal cable	Standard 4× VIDEO IN (for 100 MHz analog inputs, A1A4)
Mains power cable	Standard 1×
USB flash drive	Standard 1×

Software packages

oortinal o patitagos	
Driver	PE USB for Windows
Software Development Toolkit (SDK)	Windows and Linux control libraries
	Library API documentation
	Python sample code
Software	Scan Control
	Microscope Data

Weight and dimensions

REVOLON TEM scan controller unit	typ. 30 × 9.2 × 48.1 cm, typ. 4 kg
Shipping	typ. 36 × 32 × 60 cm, typ. 5 kg

Site requirements	
Power	1× mains 105/240 VAC single phase 50/60 Hz
	On the same Gnd. as the microscope
TEM connections	1× external scan interface (daisy-chain configuration supported)
	1× minimum video signal outputs
Space	Controller should be placed in a TEM rack
PC / Laptop	Intel Core i3 minimum
	1× minimum USB 2.0
	Network is recommended for remote support
Display	1,280 × 1,024 minimum resolution

25 digital gain
00 kHz TTL clock output
ixel, Line and Frame clock modes
bit 1 GHz analog (ECL1ECL2)
eshold level outputs
atus overview
d options list
etailed information
onnection settings
rack-mountable

Our design principles

We look back on 30 years of experience in development and manufacture of high-performance instruments and technologies for microscopy.

We are driven by an ambition to expand abilities and to improve performance of electron microscopes.

Our aspiration is to make the best quality tools and to join our customers on their journeys of scientific exploration and discovery.

Performance

- Microscopy must be a reliable and enjoyable experience
- Design for highest speed and resolution at the lowest noise
- Develop smart independent controllers for live optimization
- Support new users with intuitive and automated controls
- Assist advanced users with access to all parameters

Efficiency

- Microscopes must provide an uninterrupted focus
- Use standard microscope controls and data formats
- Give instant feedback with live image mixing and processing
- Add bespoke software tools and algorithms for repetitive tasks
- Support developers with open access libraries and documentation

Environment

- Products and technologies must be sustainable
- Reduce power consumption through smart design
- Minimize material use, embrace reuse where possible
- Save weight and volume for shipping and maintenance
- Enable everyone to develop sustainable innovations

Quantification

Data and control must be in physical units

- Provide calibrated inputs and outputs for quantitative measurements
- Supply samples, procedures, and software for calibration
- Distribute all control parameters in device independent values
- Empower the user to operate the SEM as a measuring device

point electronic GmbH Erich-Neuß-Weg 15 | 06120 Halle (Saale) | Germany Tel.: +49 345 1201190 | info@pointelectronic.de www.pointelectronic.de

